PHYSICS OF SUNSHINE

- solar radiation during eclipse —
- eclipse visibility
- eclipse chromosphere
- eclipse corona
 - chromospheric and coronal radiation outside eclipse —
- disk chromosphere
- disk corona
 - quick course on solar spectrum formation —
- photospheric line formation
- photospheric continuum formation

PHYSICS OF SUNSHINE

Rob Rutten

M/F Norröna, Tórshavn, Faroe March 20 2015

http://www.staff.science.uu.nl/~rutte101

(google "rob rutten website")

employment

1963 – 2007: Utrecht University, The Netherlands

2002 – 2007: Oslo University, Norway

2007 – present: retired but active (excepting totality)

research: solar chromosphere (spectrum, structure, dynamics)

teaching: solar and stellar spectrum formation

eclipse flash spectrometry as student

May 20 1966 Greece Nov 12 1966 Brazil Mar 7 1970 Mexico

eclipse flash observation as tourist

 Jul 11 1991 Mexico
 Aug 11 1999 Hungary
 Jun 21 2001 Zambia

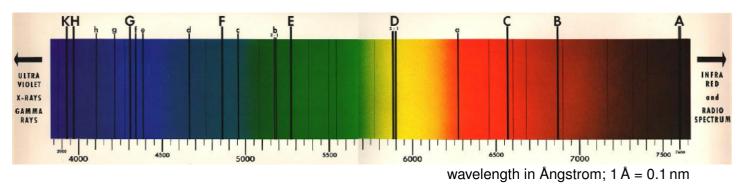
 Mar 29 2006 Libya
 Aug 1 2008 Mongolia
 Jul 21 2009 China

 Nov 14 2012 Australia
 [Mar 20 2015 Faroe]
 Mar 9 2016 Sulawesi

 Aug 21 2017 USA
 Jul 2 2019 Argentina

FROM WHITE TO COLOR

Manicouagan Reservoir, Quebec, August 2006


- rain droplets disperse sunlight across wavelength
- visible sunlight is a continuum made up of violet blue green yellow red
- "white light" = sum of colors with "radiation temperature" about 6000 C
- just as white-hot iron, the solar photosphere ("surface") is about 6000 degrees

Appreciate that bluish stars (Sirius) are hotter, reddish stars (Betelgeuse) are cooler

FRAUNHOFER'S DISCOVERY

http://en.wikipedia.org/wiki/Joseph_von_Fraunhofer

In 1814, Fraunhofer invented the spectroscope, and discovered 574 dark lines appearing in the solar spectrum. They are still called Fraunhofer lines. Kirchhoff and Bunsen showed in 1859 that they are atomic absorption features providing diagnostics-at-a-distance of the local conditions in the atmospheres of the Sun and other stars.

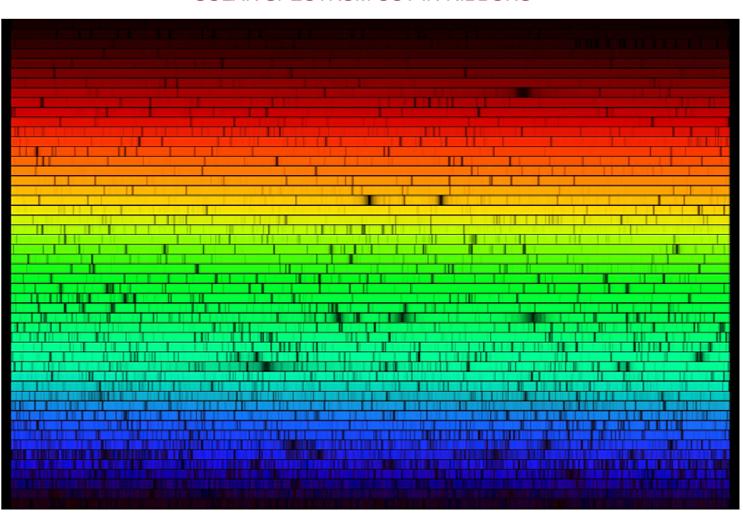
K & H: resonance lines of calcium ions

G: rotation-vibration band of CH molecules

F: Balmer- β line of hydrogen atoms

b: three lines of magnesium atoms

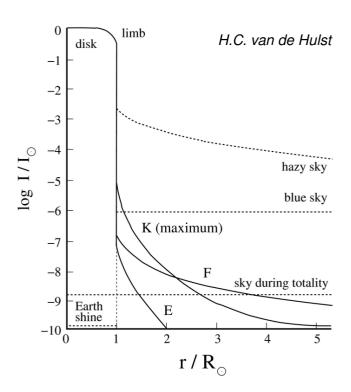
E: a group of lines of iron atoms


D: two resonance lines of sodium atoms (the same as in street lights)

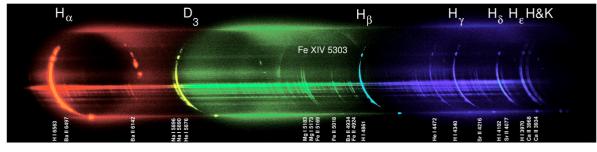
C: Balmer- α line of hydrogen atoms (H α)

B & A: rotation-vibration band of oxygen molecules in the Earth atmosphere

SOLAR SPECTRUM CUT IN RIBBONS

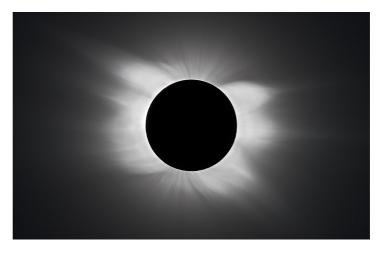


SOLAR ECLIPSE VISIBILITY


P. den Hartog

- dusty sky has 0.1-0.01% of the solar brighness $(10^{-3}-10^{-4})$, brighter closer to Sun
- "coronal" blue sky (Rayleigh scattering) is one millionth (10⁻⁶), even distribution across sky
- during totality the sky brightness is only one billionth (10^{-9}), less than the coronal brightness
- "K" = continuum component, "F" = Fraunhofer component, "E" = emission-line component
- earthshine: new-moon brightness from full-earth irradiation

ECLIPSE CHROMOSPHERE

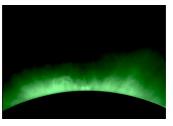

EurAstro Team Szeged I August 11, 1999

- chromosphere = purple rim just after second contact and just before third contact.

 Name given by Norman Lockyer 1868, outside eclipse; Jules Janssen saw it first, two days after the August 18 1868 eclipse. The chromospheric "flash" spectrum contains:
 - HI Balmer lines: $H\alpha$, $H\beta$, $H\gamma$, $H\delta$, $H\epsilon$
 - He I D₃ (name "helios" also from Lockyer while Janssen discovered it first)
 - Call H&K
 - weaker: Na I D₁ & D₂ (left of D₃), lines of Mg I, Fe II, Sr II, Ba II
- chromosphere enigma
 - spatial extent (purple rim width) ≫ equilibrum scale height ⇒ highly dynamic
 - both hot (He I D₃) and cool (Na I D₁ & D₂) \Rightarrow highly inhomogeneous
 - "the most difficult domain of the solar atmosphere"

Appreciate that when you see the chromosphere you see the intrinsic color of the stuff the Universe is made of: hydrogen and a bit of helium!

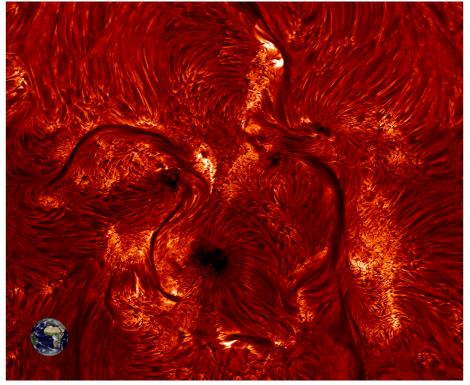
CORONAL WHITE LIGHT



- Walter Grotrian (Potsdam, 1931)
 white ⇒ Thomson scattering of photospheric photons by free electrons
 weak ⇒ low electron density (electron cross-section only 10⁻²⁵ cm²)
 absence of photospheric Fraunhofer lines ⇒ washed out by large Dopplershifts
 required electron speeds 4000 km/s [⇒ if motions thermal: 1 million degrees!?]
- linear polarisation from right-angle scattering
- fine structure maps variatons in electron density dictated by magnetic fields
- the F component further out results from photon scattering by slower-moving interplanetary dust particles; its spectrum shows the photospheric Fraunhofer lines

Appreciate that during totality you are illuminated by normal photospheric light — but only a 10^{-7} fraction bounced around the moon, without Fraunhofer lines, and polarized too!

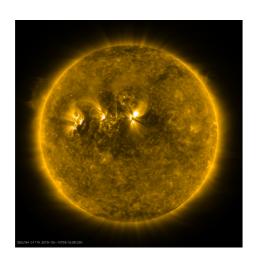
"CORONIUM" LINES

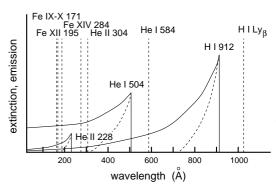

narrow-band totality image 5302.9 Å

The coronal spectrum during totality is a continuum with a few bright lines initially ascribed to an element "coronium". However, in 1939 Grotrian suggested that two lines are transitions of highly ionized iron, suggesting an "ionization temperature" of 1 million degrees. In 1942 Edlén identified nineteen lines, proving that the corona is indeed very hot. The large electron speeds washing out the Fraunhofer lines are thermal motions. The third proof of high temperature, also in 1942, was the detection of thermal solar radiation at long (1 m) radio wavelengths.

name	wavelength	identification
green line		Fe XIV
yellow line	5694.5 Å	Ca XV
red line	6374.5 Å	Fe XI

Appreciate during totality that the corona is hot! Its temperature is 1–2 million degrees, much hotter than the 6000 C of the photosphere. Violating the second law of thermodynamics? No, the bulk of solar energy is visible radiation to which the corona is transparent. The high temperature results from the magnetic activity which the Sun displays, just as all other "cool" stars with a convection zone below the surface acting as a magnetism-generating dynamo. The coronal heating mechanisms are magnetic field reconnection and magnetic wave dissipation, but these are not precisely identified – nor is the dynamo understood.


ON-DISK CHROMOSPHERE IN H-ALPHA



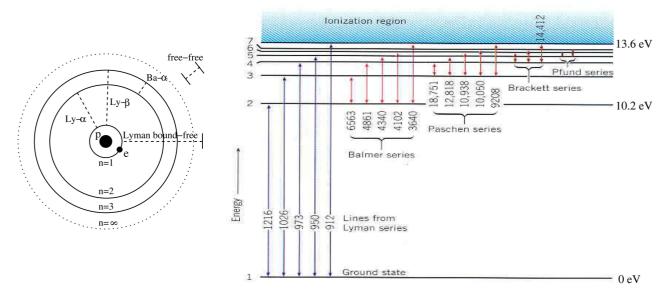
Dutch Open Telescope, Earth to scale http://www.staff.science.uu.nl/~rutte101/dot

- hydrogen Balmer-alpha dominates the flash spectrum
- ullet on the solar disk Hlpha shows intricate forests of long fibrils and filaments
- I suspect that these are "contrails" that outline the trajectory of hot disturbances traveling along magnetic fields

ON-DISK CORONA IN THE ULTRAVIOLET

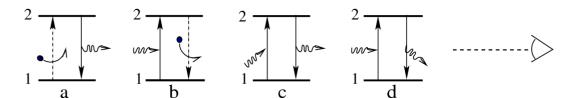
iron lines

- Fe IX/X 171 Å: about 1 million degrees
- Fe XII 195 Å: about 1.5 million degrees
- Fe XIV 284 Å: about 2 million degrees

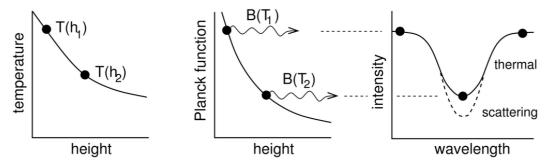

bright

- collision up, radiation down
- thermal photon creation + photon loss
- one line: selected loops = special trees in forest

dark


- lack of emissivity or bound-free scattering
- scattering: radiation up, re-radiation at boundfree threshold ⇒ black in narrow passband
- scattering: neutral hydrogen, some helium
- movies http://sdo.gsfc.nasa.gov
 - recent 171 Å movie
 - birthday 171 Å movie

BOHR SKETCH AND GROTRIAN DIAGRAM FOR HYDROGEN


- Hydrogen atom: proton (+) and electron (-) in discrete orbits = "energy levels"
- Lyman lines: bound electron jumps between ground level n = 1 and higher ("excited") levels. Ly- α (1216 Å): between n = 1 and n = 2, Ly- β (1026 Å): $n = 1 \Leftrightarrow n = 3$, etc.
- Balmer lines: bound electron jumps between n = 2 and higher levels. H α (6563 Å): $n = 2 \Leftrightarrow n = 3$, H β (4861 Å): $n = 2 \Leftrightarrow n = 4$, etc.
- Bound-free: electron loss = ionization, electron catch by a naked proton = recombination. n = 1: Lyman continuum ($\leq 912 \text{ Å}$), n = 2: Balmer continuum ($\leq 3640 \text{ Å}$), etc.
- Free-free: trajectory change of a free electron near a proton (H ff) or hydrogen atom (H⁻ ff)

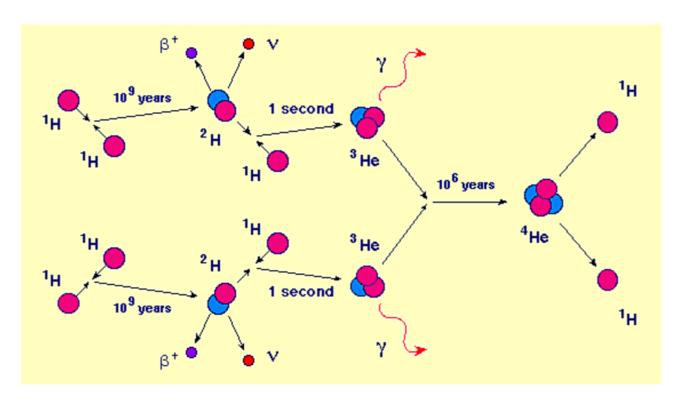
EMISSION AND EXTINCTION OF LINE PHOTONS

- Excitation up occurs either through absorption of a photon with the correct energy (corresponding wavelength), or through loss of kinetic energy in a particle collision.
- Deexcitation down occurs either through emission of a photon at the line wavelength, or through gain of kinetic energy in a particle collision.
- Pair a: collisional excitation followed by emission of a photon in the viewing direction (to the right) = thermal creation of a new photon in the beam.
- Pair b: absorption of a photon in the viewing direction followed by collisional deexcitation = thermal destruction of an existing photon in the beam.
- Pair c: photon scattering into the beam, counts as emission.
- Pair d: photon scattering out of the beam, counts as extinction.
- Line source function S_{λ} : the amount of new beam-photon emission (a+c) normalized by the probability of beam-photon extinction (b+d).
- When there are more collisional jumps then radiative jumps, both up and down, then the emission and extinction are set thermally with $S_{\lambda} \approx B_{\lambda}(T)$, with B_{λ} the Planck function for the local temperature. When scattering dominates $S_{\lambda} \approx J_{\lambda}$, with J_{λ} the mean intensity of the impinging photons averaged over all directions.

FORMATION OF FRAUNHOFER LINES

- Spectral lines are due to valence-electron jumps between two discrete energy levels, causing additional emission and extinction only at the line wavelength.
- The extra photon extinction at the line wavelength makes the gas less transparent than at neighboring wavelengths. Therefore, at the line wavelength the solar radiation escapes further out (at larger height in the solar atmosphere).
- The intensity of the escaping radiation is given by the Planck function for the local temperature if frequent collisions couple the source function to the local gas kinetics. This is the case in deep layers where the gas density is high.
- The temperature decreases with height through the solar photosphere. It is lower at the larger height where the radiation at the line wavelength escapes, making the resulting Fraunhofer line dark with respect to nearby wavelengths.
- The darkest lines are formed the furthest out. The low gas density at large height makes scattering dominate over thermal control. It darkens the lines yet more.
- The bell shape of the Fraunhofer lines is caused by the Dopplershifts imposed by atomic motions and by particle collisions in the solar gas.

EDDINGTON'S TWO CLOUDS

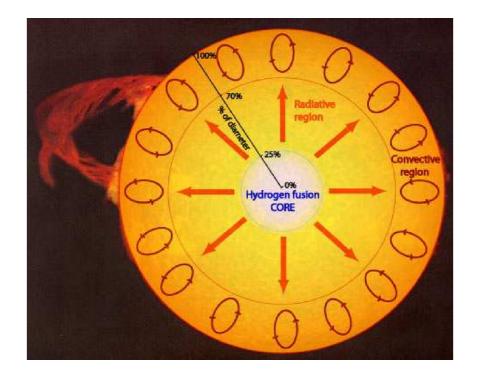

Arthur Stanley Eddington 1882–1944

"The Internal Constitution of the Stars" (1926)

- concluding sentence
 - "it is reasonable to hope that in a not too distant future we shall be competent to understand as simple a thing as a star."
- "two clouds obscure the theory of the stars"
 - what is the source of the internal energy by which stars shine?
 - what is the source of the continuous opacity in the atmosphere?
- answers for the Sun
 - source of energy: fusion of hydrogen into helium in the solar core
 - source of opacity: H-minus extinction in the solar atmosphere

PROTON-PROTON REACTION CYCLE

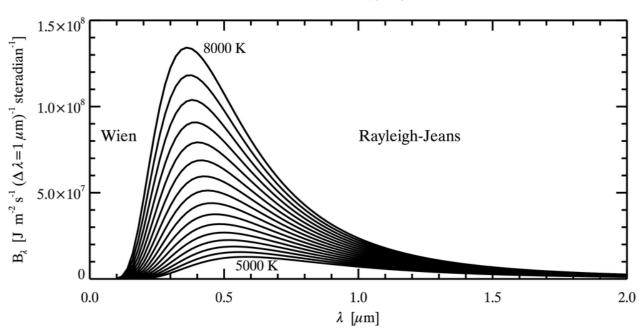
http://en.wikipedia.org/wiki/Proton-proton_chain_reaction



+ positron-electron annihilation: $\beta^+ + \beta^- \Rightarrow 2\gamma$

net: 4 protons (1_1 H) + 2 electrons (β^-) \Rightarrow 1 alpha particle (4_2 He) + neutrinos (ν) + gamma radiation (γ)

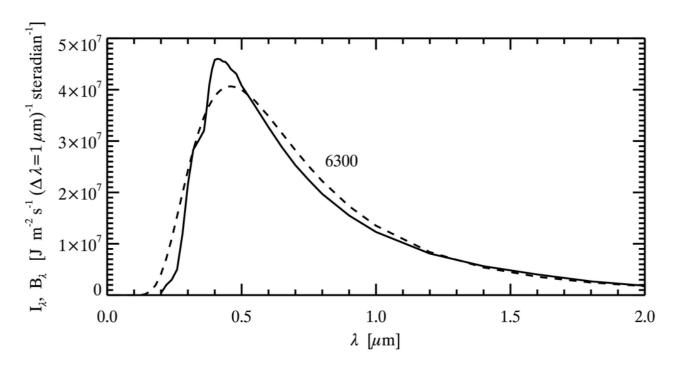
start


ENERGY FLOW THROUGH THE SOLAR INTERIOR

- core: gamma radiation from fusion of hydrogen into helium
- inner two-thirds: radiative energy diffusion (absorption re-emission)
- outer one-third: convective energy transfer ("boiling")
- energy transfer takes about ten million years from core to surface
- mean photon energy "cools" five million times from gamma to visible

PLANCK FUNCTION AND APPROXIMATIONS

Planck function:
$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$

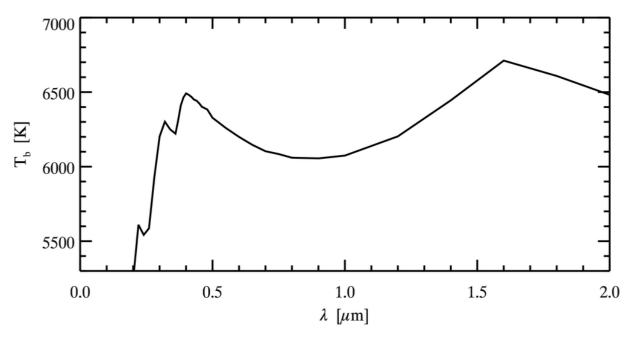


Wien approximation: $e^{hc/\lambda kT} \gg 1$: $B_{\lambda}(T) \approx \frac{2hc^2}{\lambda^5} e^{-hc/\lambda kT}$

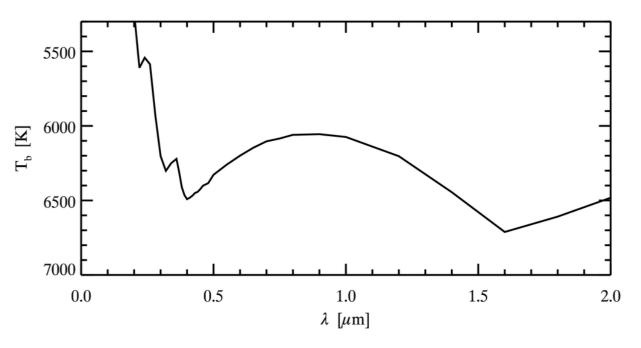
Rayleigh-Jeans approximation: $hc/\lambda kT \ll 1$: $B_{\lambda}(T) \approx \frac{2ckT}{\lambda^4}$

The temperature sensitivity is exponential in the Wien part, linear in the Rayleigh-Jeans part.

SOLAR SPECTRUM AND BEST-FIT PLANCK CURVE

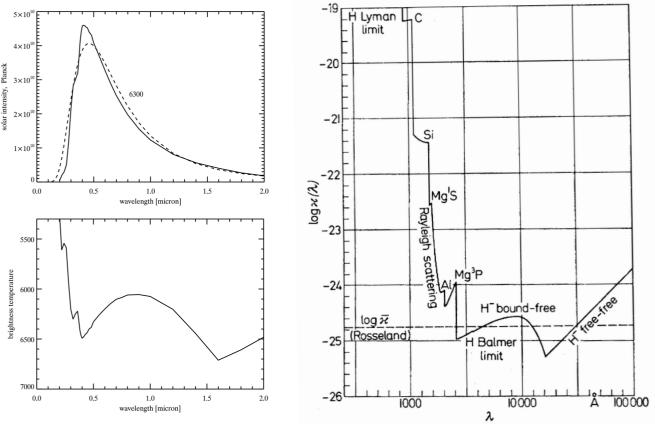


Solid: solar disk-center continuum (high points between lines).

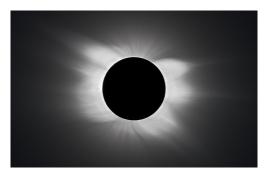

Dashed: Planck function $B_{\lambda}(T)$ for T=6300 K.

At which wavelength is solar radiation hottest?

PLANCK INVERSE OF THE SOLAR SPECTRUM


Solar radiation brightness temperature T_b with $B_\lambda(T_b) \equiv I_{\rm sun}$, or $T_b = [B_\lambda]^{-1}(I_{\rm sun})$. This is a formal temperature. It equals the gas temperature where the radiation escapes when that radiation is given by the Planck function for that temperature. This is the case for $\lambda > 0.5~\mu m$. Solar radiation is hottest at wavelength $\lambda = 1.6~\mu m$ in the near infrared.

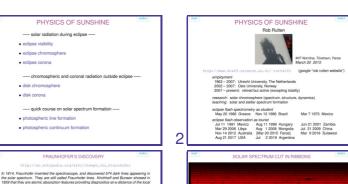
The temperature in the solar photosphere decreases with height, so that the brightness temperature of the escaping radiation is higher at wavelengths where it escapes deeper. This upside-down T_b graph shows that the solar gas is most opaque in the ultraviolet ($\lambda < 0.3~\mu\text{m}$). The opaqueness hump in the visible (0.4–0.8 μm) and near-infrared was a long-standing enigma until H $^-$ (hydrogen with a second electron) was identified as major opacity source.


The solar gas is most transparent at the H $^-$ "ionization" threshold wavelength of 1.6 μ m.

SOLAR PHOTOSPHERE OPACITY

Right: photospheric gas opacity against wavelength (logarithmic), labeled with the processes causing it. Ultraviolet: ionization of C, Si, Mg, Al. Visible ($\lambda = 0.4 - 0.8 \ \mu m = 4000 - 8000 \ \text{Å}$) and near infrared: H⁻ bound-free (H⁻ "ionization"). Far infrared: H⁻ free-free (acceleration of free electrons in the Coulomb field of neutral hydrogen atoms). From E. Böhm-Vitense.

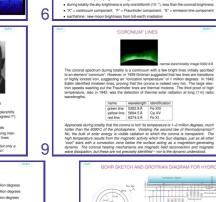
SUMMARY



P. den Hartog

- The energy freed by fusion of hydrogen into helium in the solar core diffuses slowly outward and escapes as visible sunlight in the photosphere.
- The photospheric gas is more opaque than the transparent air around us, due to the presence of H⁻ particles (hydrogen atoms with a second electron).
- The solar spectrum is full of Fraunhofer lines that represent diagnostics of local circumstances at the level of atomic interactions ("the astronomer's treasure chest").
- At the onset and near the end of totality the chromosphere presents itself through purple radiation ("flash spectrum") consisting mainly of hydrogen and helium lines.
- During totality the corona presents itself through pearly white radiation which is a minute fracton of the photospheric light, scattered towards us by free electrons. At the milliondegree temperature the electrons move so fast that the Fraunhofer lines are washed out by Doppler shifts. The intrinsic coronal emission is in ultraviolet lines from highly ionized elements and at long radio wavelengths from H free-free (proton-electron collisions).

Appreciate the beauty of the chromosphere in displaying the stuff the Universe is made of, and that the corona is the hottest thing you may see in your life!


index

wavelength in Angstrom; 1 A = 0.1 nm

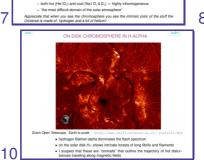
FROM WHITE TO COLOR

visible sunlight is a continuum made up of violet – blue – green – yellow - red

. just as white-hot iron, the solar photosphere ("surface") is about 6000 degrees

SOLAR ECLIPSE VISIBILITY

dusty sky has 0.1 – 0.01% of the solar brighness (10⁻³ – 10⁻⁴), brighter closer to Sun


"coronal" blue sky (Rayleigh scattering) is one millionth (10⁻⁶), even distribution across sky

blar sky

"white light" = sum of colors with "radiation temperature" about 6000 C

Appreciate that bluish stars (Sirius) are hotter, reddish stars (Betelgeuse) are coole

· rain droplets disperse sunlight across wavelength

conditions in the atmospheres of the Sun and other stars

K & H: resonance lines of calcium ions G: rotation-vibration band of CH molecules F: Balmer-β line of hydrogen atoms b: three lines of mannesium atoms

C: Ralmerus line of hydrogen atoms (Hu)

- HI Balmer lines: Ho. HS. Hv. HS. Hr.

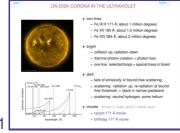
- Call H&K

· chromosphere enigma

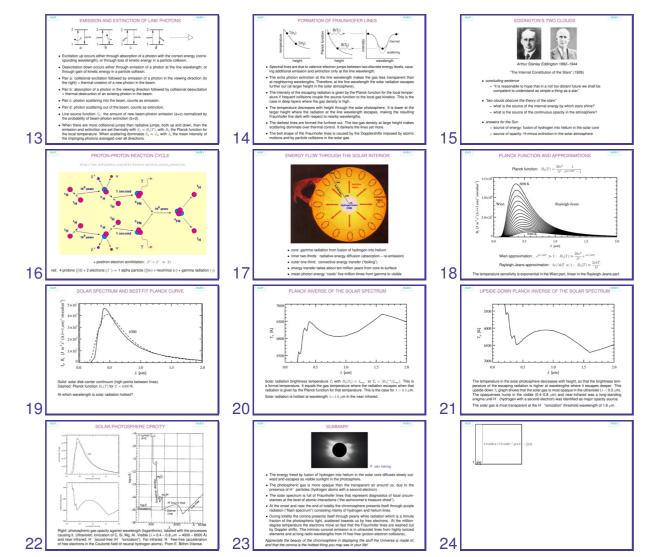
D: two resonance lines of sodium atoms (the same as in street lights)

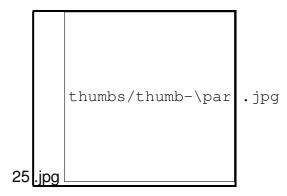
ECLIPSE CHROMOSPHERE

- He I D₃ (name "helios" also from Lockyer while Janssen discovered it first)


spatial extent (purple rim width) ≫ equilibrum scale height ⇒ highly dynamic

- weaker: Na I D, & D, (left of D,), lines of Mg I, Fe II, Sr II, Ba II


B & A: rotation-vibration band of oxygen molecules in the Earth atmosphere


EurAstro Team Szeged I August 11, 1999
Chromosphere = purple rim just after second contact and just before third contact.
Name given by Norman Lockyer 1868, outside eclipse; Jules Janssen saw it first, two
days after the August 18 1868 eclipse. The chromospoheric Teath's spectrum contains:

E: a group of lines of iron atoms

